Tackling the footprint of pests, weeds & diseases in our food system

It’s tough being a plant, especially if you’re a crop plant!

You are rooted to the ground and if a pest tries to eat you or if a disease or weed spreads in your neighbourhood you’re trapped where you are and can’t run away. This means that wild plants have evolved some pretty sophisticated ways of defending themselves… Acacia thorns have holes in which ants can live that control pests… there is a splendid array of defensive chemistry that exists in nature and symbiotic relationships have evolved with natural enemies of pests.

For a crop plant the situation is even more difficult – you are grown in uniform stands of the same species which means you are easier to find and can’t hide amongst different plants. Not only this but you are also selected artificially. People choose the best tasting or best yielding plants to sow again and develop as crop varieties. This means your natural defences may be weakened unless you’re lucky and have been selected for pest or disease resistance. Furthermore, you get heaped with extra nutrients to help you grow which is nice but when you grow lush your attackers find you even more attractive…

Sustainable, practical solutions

But you’re not a plant, you’re a person reading this who wants to know more about sustainable, practical farming! Pest, weed and disease challenges are clearly agroecological challenges: the population of an adapted organism is running out of control. Agricultural habitats provide ideal conditions for pests, weeds and diseases to thrive in. Although attacking organisms add biodiversity to what might have been a monoculture, that isn’t the kind of biodiversity we want – especially if it means we can’t eek out enough of the crop we’re trying to grow. Outbreak populations can cripple our crop cultivation.

We care about the environment and therefore we want to minimise the environmental footprint of agriculture. This means minimising the resources used for food production. If cropping is inefficient due to losses to pests, weeds and diseases then we need more land, more water, more nutrients and more energy to grow the same amount of a crop. This could mean less space and resources for nature in wild habitats.

Potential wheat crop losses to pests, weeds and diseases. Photo credit: Toby Bruce

Potential wheat crop losses to pests, weeds and diseases. Without any crop protection measures it is estimated that 9% of wheat harvests would be lost to pests, 23% to weeds and 18% to diseases.1 Only half the harvest is left after that.. (Photo credit: Toby Bruce)

So what to do about this?

Well, farmers have been using pesticides for a long time. The first recorded use of insecticides is about 4500 years ago by Sumerians who used sulphur compounds to control insects and mites. Concoctions such as Bordeaux Mixture, based on copper sulphate and lime, have been used against various fungal diseases since ancient times. Since the 1940s synthetic pesticides have been widely used and arguably been overused.

Concern about effects on human health and the environment has partly led to the growth of organic agriculture which bans use of synthetic inputs in farming systems although natural products based pesticides are allowed. However, dangerous toxins can occur naturally, for example, mycotoxins or batrachotoxins from poison-dart frogs. This means caution is still needed and some organic organisations have banned rotenone even though it is a natural product. Conversely, certain synthetic compounds are relatively benign, particularly ones which have been registered recently because the regulatory system has become stricter.

Consumers are seeking food grown with minimal pesticide use and the availability of synthetic pesticides is declining even for conventional farmers due to changes in legislation and the evolution of pesticide resistance by the pests, weeds and diseases. This means that all farmers are now interested in alternative or integrated approaches to pest, weed and disease management that can reduce dependency on pesticides. The answers no longer come out of a can.

Increasing biological control, exploring cultivars and plant ‘rewilding’

I think there are promising routes for reducing pesticide dependency. Increasing biological control can have a major benefit. If there is less chemistry, we need more biology and the use of natural enemies has had huge successes in greenhouse environments. The next frontier is to make biological control work in open field outdoor crops. This could be done with innovative biological products especially if natural enemies could be lured from conservation headlands into the main crop.

Another promising avenue is selecting resistant crop cultivars. Orange wheat blossom midge resistant wheat was a tremendous success. Increasingly farmers are considering disease resistance when selecting which crop variety to grow and this actually makes business sense as well as environmental sense: if less money is required for pesticide applications profit can be increased.

In my opinion ‘rewilding’ plants by transferring resistance genes from wild ancestors should not be ruled out but this is a controversial subject and not everyone will agree with me. I personally think organic farmers could gain a lot from genetic enhancement of crops, but this is a decision for the organic sector to make.

Much can be made of good husbandry and agronomy to reduce pest, weed and disease risk by avoiding conditions that favour build-up of their populations. Crop rotation and avoiding spreading of weed seed or pest or disease sources are examples. More can be done to redesign farming systems to create a better habitat for the natural predators of pests and by making use of mixed cropping.

Information sharing: introducing CROPROTECT

All farmers are facing increasing difficulties with pest, weed and disease management. To try and make life easier for them, I have set up a network known as CROPROTECT (with funding from the BBSRC-NERC Sustainable Agriculture Research and Innovation Club). It is available through the www.croprotect.com website or via phone Apps (Android and IOS).

CROPROTECT provides easy access to information about pest, weed and disease management for farmers and agronomists, especially in situations where effective pesticides are not available and alternative approaches are required. Pesticide usage info is readily available on the label on the pesticide container but as the solutions no longer come ‘out of a can’ there is an information gap about the key points for alternative or integrated approaches. CROPROTECT aims to fill that gap by distilling out key management recommendations for pests, weeds and diseases. The pests, weeds and diseases featured are the ones which pioneer users of the system flagged up as being of particular concern.


Toby Bruce is a research scientist at Rothamsted Research, his work focuses on chemical ecology and integrated pest management (IPM). He is also an Agricology Steering Group member. 

1Oerke, E.C, 2006. Crop losses to pests. The Journal of Agricultural Science 144: 31-43

Header image photo credit: Rothamsted Research

Associated Agricology Partner Organisation(s):

The information contained above reflects the views of the author/s and does not necessarily reflect that of Agricology and its partners.

Related articles

Bucking the trend: an alternative approach to couch control

How can we manage pernicious perennial weeds without recourse to agrochemicals, or cultivations that can damage soil structure and soil biology? For organic farmers that...

Agroecological principles to support Integrated Weed Management

To provide farmers with a wider choice of options for ‘diversification’ of their cropping systems, several EU and national projects were set up to explore...

Balancing crop production & wildlife management

During May, we explored the subject of farm wildlife and functional diversity - ways of producing effectively and productively through managing your farm for wildlife.

Back to the future: exploring the benefits of mixed farming

I believe reintegrating leys and livestock into arable rotations can play a key role in the transition to more sustainable and resilient farming systems. I am inspired by...

Black-grass: what’s the problem, what’s the solution?

Although often considered a relatively ‘new’ weed, it was recognised as a ‘very trouble­some weed among wheat’ over 175 years ago (Sinclair, 1838).

“We found a way to farm with nature rather than against it.”

Charley and Andrea Walker take a holistic approach to farm management by carefully considering the social, ecological and financial impacts of every decision. They aim...

Farmer led policy – leading the way on reducing antibiotic use on farm

Can dairy farmers lead the way in the UK for antibiotic reduction? Why of course, it is already happening!

Can a neonic-free future be good for farming and nature?

As I write this, the European Commission is considering whether to extend the current partial ban on neonicotinoid insecticides (neonics) - introduced to protect bees...

Combining sticky traps & technology to monitor cereal aphids & predict BYDV risk

John Holland discusses using monitoring tools to predict aphid levels and assist management techniques

Could farming with trees help to control pests and boost pollinators?

Tom Staton discusses the initial indicators that farming with trees could help to boost pollinators and help to control pests

Dealing with diamond-backs!

Rosemary Collier discusses the damage caused by Diamond-back Moths, and some of the novel approaches to manage them.

Community-supported farming, seed saving & ‘the fight against blight’

Community-supported farming gives people the opportunity to define their own food and agriculture. The agroecology approach encourages using local resources effectively, recycling of nutrients and energy...

Pest & Disease in the Market Garden

In this month's Agricology Vlog, Jez Taylor, Head Grower at Daylesford Organic Market Garden, discusses how he manages pests and disease in the market garden...

Getting on top of the weeds

In organic systems particularly, it is most effective to consider weed control at every stage of the crop production process, and to tackle them at...

Pest and disease management in Solanums

Jez Taylor, Head of the Daylesford Market Garden, talks about pest and disease management in Solanums.

Nature-based Integrated Pest Management – hints, tips and more

"We set out to create some easy to follow but detailed resources that would help farmers, growers and other land managers to increase their use...

Improving efficiency, profitability and sustainability through reducing farm emissions

In the general stresses that surround farming including making day-to-day business decisions, not annoying the Rural Payments Agency, looking after stock and crops, managing staff,...

Insecticide resistance in the peach-potato aphid

Of the thousands of aphid species that exist globally, only a few have developed insecticide resistance. However, some of these are ranked among the most...

Integrated Farm Management: Looking back & stepping forward

On the 19th May, LEAF will hold its first Integrated Farm Management (IFM) Conference in Waddesdon, Buckinghamshire. The conference, titled ‘IFM: A Framework for the...

New slug control guide launched by MSG

Slugs, slugs and more slugs! Some farming activities can encourage them more than others, and the seemingly ever increasing unpredictable weather patterns also add to...

New perspectives on farming

In September 2015, 42 people; a motley bunch of bakers and bankers, neighbours and scientists each co-invested £200 in a field of wheat in fertile Lincolnshire....

Potato blight – is the answer beneath the covers?

Through the Innovative Farmers network, a group of growers have come together to look at ways of combating potato blight using novel techniques. They are...

Scrap the pumps- bring in the worms!

It is becoming increasingly apparent that our approach to flood management needs a re-think. Expensive structures and barriers, pumps and sluices might look impressive but...

Integrated Pest Management

The LEAF guide to Integrated Pest Management for farmers.

A Practical Guide to Integrated Pest Management

This guide from the Nature Friendly Farming Network covers the principles and practice of Integrated Pest Management with case studies and examples of actions.

Biological control strategies for outdoor vegetable production

Presentation given by Koppert UK at an Agricology field day event on integrated pest management strategies for outdoor vegetable production.

Simply Sustainable Integrated Pest Management

An up-to-date, easy to read guidebook and manual on why Integrated Pest Management is the key to sustainable crop health across agricultural and horticultural sectors...
To top